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The dynamical Euler equations describing the motion of a non-symmetrical solid about the centre of mass in 

the field of a constant external moment and a dissipative one are considered. It is assumed that the external 

moment specified with respect to axes attached to the body acts about the intermediate central axis of 

inertia of the body. The conditions for global asymptotic stability as well as the stability in total of steady 

rotations of the solid are obtained. 

1. STATEMENT OF THE PROBLEM 

CONSIDER the Euler equations of motion of a solid about the centre of mass written in a system of 

coordinates attached to the body [l, 21 

Z&i = -(Zs -Z,) 02w3 - kiziwi + Fi(1 2 3) (1.1) 

Here or, w;? and ws are the projections of the vector of the instantaneous angular velocity w on to 

the coordinate axes, Ii > Z2 >Z3 are the principle central moments of inertia of the body, ki , k3 and 

k3 are the damping factors along the corresponding axes [3], and Fi , F2 and F3 are the components 

of a perturbing moment F. 
Equations (1.1) have been examined by many researchers. In particular, Greenhill proved that system (1.1) 

has an exact solution in elliptic functions [4] at F = 0 and ki = k2 = k3. Under the same assumptions, an 
expansion of the solutions of this system in terms of the small parameter E = (II - Zz)/Z3 was constructed in [S]. 
The asymptotic properties of solutions when there are small dissipative and small steady external moments was 
examined [2] by the averaging method. The small-scale stability of the rotation of a body was examined in [3] 
by the direct Lyapunov method assuming that one component of the vector F is non-zero. 

Note that if we replace --w x L by OX L in the system of equations (1.1) where L = ZW, I = diag(Z1, Z, , Is), 
we obtain equations well known in fluid dynamics that describe the motion of a liquid gyroscope. Those 
equations have been examined, for instance, in [f5-8]$ for the case when the friction is isotropic (k, = k2 = k3). 

In this paper, Eqs (1.1) are examined when Fl = F3 = 0 and when F2 = F,,> 0. This means, 

physically, that the external moment is orientated along the intermediate axis of inertia of the body. 
The main object of this paper is to single out the domains in the space of the parameters of system 
(1.1) for which the set of steady rotations of the body is stable for any perturbations of the vector of 
the instantaneous angular velocity o. The investigation is non-local in nature and is carried out using 
the direct Lyapunov method and the results of the qualitative theory of multidimensional dynamical 
systems [6, 9, lo]. 

Let us introduce the new parameters and time 
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--- 
12 - 13 

po=2------ E 
dw3 vmx- 

= = --- II -13 [O, 21 ) fo 2 -r--y 1 3 E’o) 1; 2 iz 1. I!. i 1, 13 k-i. 

t’ = t 
11 - 13 

hxm- 
By changing the variables 

we then reduce Eqs (1.1) to the form 

X’ =-/,x+?‘2. J” = - II?, - pof& z -- pox2 
( 1 .I!, 

z’ = 
-~3~-~~-Po).fo~;1Y m-(2 -Po)X.Y 

We see that the cases of dynamical symmetrical bodies for which f2 = l3 and I, = II, correspond 
to the values p. = 0 and p. = 2, respectively. These cases have been examined in detail and will not 
be considered here [ll]. Also note that equality I2 = (I, + 13)/2 corresponds to the value y,, = 1 

When the condition 

fo<f* (f*=~zrnlrn2-P0)) (1..3) 

holds, the system of Eqs (1.2) has a unique asymptotically stable (in Lyapunov’s sense) equilibrium 
position C, with coordinates x = 0, y = 0, z = 0. It loses its stability when ,Jl >,f*, and transfers it to 
two produced equilibrium positions C, ,? with coordinates 

Pofof, x 
1. 

z = f* - fo 
12 

a Yl,2 = 2 

L 
I__ __ _$y”; zl,2=i[ y!pi $j” 

1112 

The eigenvalues of the matrix of the vector field of system (1.2) linearized at (‘. then have the 
form 

h, = -12, h2,3 = % j-(11 +I,)+ [(II - 13)2 +41J3f;/fy 1 

Note that the steady rotation of the body about the intermediate principal central axis of inertia 
corresponds to the equilibrium position C,,, the axis of the instantaneous rotation being collinear 
with the vector F; the other steady rotations correspond to the equilibrium positions C1.2. 

We will say that the system of equations (1.2) is globally asymptotically stable if any of its 
trajectory x =x(t), y = y(f), z = z(t) approaches one of the equilibrium positions as t+ 30; it is 
asymptotically stable in total if it has one asymptotically stable (in Lyapunov’s sense) equilibrium 
position and is globally asymptotically stable; (1.2) is dissipative, in Levinson’s sense [ 121, if a 
number R>O exists such that lim IX(t),,, / CR for any X,, = X,(O). Here X(t) = 11x(t), y(t). 
z(t)ll, and the symbol IX(t) / denotes the Euclidean norm of the vector. Also let us recall that a set 
M of a phase space is called invariant if it consists entirely of trajectories of the system. 

2. THE STABILITY IN TOTAl. OF THE STEADY MOTIONS OF A SOLID 

Let us take into consideration the Lyapunov function of the form 

w(x,y,z)=p~(2-po)x2 +%[(2-po)y2 +poz21 -I-@x 

0 E [O_, Q,] , o* = 2 1 po(2 -. Po)foll2 2 [POQ - PO>(ll - AN3 - WI” 1 

hE(O,X.), h,=min111,~2,~31 

and the non-negative number 

r= 
(12 - 2h)2 o2 

16po(2 -PO) V2 -. X) 
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Lemma I (on dissipation in Levinson’s sense). For any trajectory of system (1.2) the inequality 

lim r-+-w(X(t),y(t),z(t))9 r 

holds. 
The proof of the lemma follows from the inequality [7] 

w*+2?xw< Zhl- (2.1) 

which is easify verified. Here W’ is, as usual, the derivative of the function W with respect to time, which is 
calculated using Eqs (1.2). 

~~eQ~~rn I. If inequality (1.3) holds, the system of equations (1.2) is asymptotically stable in total. 

Proof We put fo = 1yf, where a is an arbitrary number in the range (0,l). The equation 

rrflII;= [(Zl - A)& - A)]% 

has the unique root ho in the interval (0, A,) for which O_ = 0. If we put 0 = O- = 0, we obtain 
I’ = 0. From this result and from inequality (2.1) it follows that W’S -2&W, (W(x, y,z) being a 
positive definite quadratic form. Note that all the conditions of the Barbashin-Krasovskii theorem 
on the stability in total are satisfied and this fact proves the statement of Theorem 1. 

Note that when examining the problem of the stability of the steady rotations of a solid about an 
intermediate axis of inertia 131, inequality (1.3) was treated as the condition for asymptotic stability 
in Lyapunov’s sense, i.e. of the stability with respect to small perturbations of the values ol, 02 and 
03, Theorem 1 states that, when inequality (1.3) holds, the specified rotation of the body is 
asymptotically stable to any perturbations of values w1 , ~2 and ~3. 

From Theorem 1 it also follows that the domain of the stability in total of system (1.2) increases 
without limit in the space of the parameters fO, II, 12, I3 for values of the parameter p0 close to 0 
or to 2. 

3. THE GLOBAL STABILITY OF THE STEADY MOTIONS OF A SOLID 

We will now establish the conditions for the global asymptotic stability of the system of equations 
(1.2). Henceforth assuming that fO>fS everywhere we will introduce into consideration the 
functions 

and the following notation: W” denotes the two-dimensional stable separatrix surface of the saddle 
point C, and W” = W,U U {C,} U IV?, where W,U and W,” are the one-dimensional unstable 
separatrices of the saddle point C, which go into the octants {XC 0, y < 0, z> 0} and {x < 0, y > 0, 
z< 0} , respectively. 

The main result of this part of the paper is the proof of the following assertion. 

~~eo~ern 2. If I1 = I3 then system (1.2) is globaliy as~ptotically stable for any 

fO>~~~~/~~~(Z_~~) 
i.e. any of its trajectory approaches a certain equilib~um position as t+ ~0 _ 

The proof of the theorem is based on the following simple assertions. 

Lemma 2. The invariant sets correspond to the equations VI (x, y, z) = 0 and VZ (x, y, z) = 0 in 
the phase space of system (1.2), and the inclusions 

WUC [x,Y,~l~1(x,Y,~)=O~ 

wsc I x,Y,~l~z(x,_Y,~)=Of 

hold. 
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The proof of the lemma follows from the obvious equalities 

vi’=0 ontheset ~X,y,~iV,=n!. 
v,’ = 0 on the set 1 x, y. z i Y, = o \ 

and from the fact that the plane tightened on the eigenvectors /3’ and p2 which correspond to the negative 
eigenvalues hr and AZ coincides with the V2 = 0 plane, and the eigenvector /?’ corresponding to the positive 
eigenvalues h2 lies in the Vi = 0 plane (p’, p2 and p’ are the eigenvectors of the matrix of the vector field of 
system (1.2) Iinearized at the point Cr,). 

Le~~u 3, The system of equations (1.2) is asymptotically stable in total in the invariant V2 = 0 
plane. 

in (1.2). 
The statement of the lemma follows directly from a consideration of the function V(x, y ) = pox2 -by’, for 

which the inequality u’fx(t). y (t)] <O holds. and from the Barbash~n-Krasovski~ theorem on the stability in 
total. 

Leslie 4. The system of equations (1.2) is globally asymptotically stable in the invariant V, = 0 
plane. 

Proof. If we put 

in (1.2) we obtain equations that are identical, at p. = 1 and I, = 12, apart from linear substitution, with the 
well-known equations of the one-dimensional flow of Burgers’ fluid j&13] 

System (3.1) is dissipative (Lemma 1), symmetrical about the x axis, and the set (?; = 0) is invariant and 
consists of the trajectories ,x = 0. y = 0; y - 0. .r = yexp(--fze) and ,V = 0. x = -yexp(-l:t) (y = const). This 
system has no limit cycles according to IMac’s criterion [4]_ fn fact, let us put. for instance, B[x. y) = l/y, then 
the expression 

11 
+ af [Q(x,y)BCx,y)l =- jy 

keeps the sign in each of the half-planes y 30 and y <O. From this and from the asymptotic Lyapunov stability 
of the equilibr$um positions Cr and C, the statement of Lemma 4 follows according to Bendixson’s theorem 

f34’j. 

Proof of T~eu~e~ 2. Let us denote by A, D = (Xl W(X) <I’) and 52, respectiveIy, the set of 
equiiibrium positions, the domain of dissipation and the w-limiting set [9] of system (1.2); the 
number I’, the vector X and the function W(X) have been specified above. From Lemma I it then 
follows that the set Sz is non-empty and R C I>. 

Consider the function 

for which 
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Let X = X(t, X0) be an arbitrary trajectory of system (1.2) and X(0, X0) = 0. From (3.2) the 
equality 

V(X&X*))= V(X,)exp(-2zlt), tao (3.3) 

then follows. 
If V(Xo) = 0, then, by Lemmas 2-4, we have 

Now suppose that V(Xo) #O, i.e. the point X0 does not belong to the invariant set {X] V(X) = 0). 
From (3.3) we then have 

V(x(t,X,))+o as t++= 

It is well known that fl is the closed set consisting of the whole trajectories. But at the intersection 
D 17 {Xl V(X) = 0} of the whole trajectories there are only the equilibrium positions C, , C, and C, 
and the unstable separatrices W,U, W,U of the saddle point (because of the absence of closed contours 
(Lemma 4) and because Bendixson’s theorem f14] holds). The point CG is a saddIe point and, hence, 
limX(t, X0) # C, as c--t 00. Let the point p E W,U be the o-limiting point for the trajectory X(t, X,). 
Consider the trajectory X(#, p). It is obvious that limX(t, p) = C, at c-+ f 03 and limX(t , p) = C2 as 
t-+ - ~0. Let the point 4 be X(t, p) in the domain of attraction & of the equilibrium position C, . It is 
well known that q is the w-limiting point for the trajectory X(t, X0). 

Let a sequence of instants {I~} be such that X(Q) XQ)--+~ as k -+ 00. Hence a value of k exists such 
that the point X(t,, X0) is located in the domain S, , and this means that X(t, X0)-+ C, as t--+ +~a. 
The latter contradicts the fact that p is the w-limiting point for X(& X0). Thus, fi = A. The theorem 
is proved. 

Note that Lyapunov’s function, used to prove Theorem 2, is not of constant sign and has the form 

w.4r02,W3l=ffCJi. 4w: -~3&-W~23 

in terms of the variabfes wl, w2 and 03, and is the bundle of the first integraIs of Euler’s equations, 
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